
  The AquaSPICE project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 958396. 

 

D4.8 – a. AI Inference tool for 

water efficiency problem 

detection and remedial action 

(intermediate)  
WP4: Digital Twin with Smart Analytics and Cognitive 

Services for Water Efficiency 
 

 

 

November 2023 
 

Authors: Dimitra Pournara (ICCS), Nikos Papageorgiou (ICCS), Dimitris Apostolou (ICCS), Gregoris 

Mentzas (ICCS), Aziz Mousas (MAG), Robert Sanfeliu Prat (EUT) 

 

Ref. Ares(2024)770739 - 01/02/2024



 

2 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

  Document Information 

GRANT AGREEMENT 

NUMBER 

958396 ACRONYM AquaSPICE  

FULL TITLE Advancing Sustainability of Process Industries through Digital and 

Circular Water Use Innovations 

START DATE 1st December 2020 DURATION 51 months 

PROJECT URL www.AquaSPICE.eu 

DELIVERABLE D4.8 – AI Inference tool for water efficiency problem detection and 
remedial action (intermediate) 

WORK PACKAGE WP4 – Digital Twin with Smart Analytics and Cognitive Services for Water 
Efficiency 

DATE OF DELIVERY CONTRACTUAL 11/2023 ACTUAL 11/2023 

NATURE Report DISSEMINATION 

LEVEL 

Public 

LEAD BENEFICIARY ICCS 

RESPONSIBLE 

AUTHOR 

Dimitra Pournara (ICCS) 

CONTRIBUTIONS 

FROM 

Nikos Papageorgiou (ICCS), Dimitris Apostolou (ICCS), Gregoris Mentzas 
(ICCS), Aziz Mousas (MAG), Robert Sanfeliu Prat (EUT), Athanasios 

Angelis-Dimakis (UOH – reviewer) 

ABSTRACT This scope of the deliverable is to demonstrate the AquaSPICE 

Analytics Platform and the use of AI, ML and analytics techniques 

to produce descriptive analytics, predictive models for forecasting 

and anomaly detection on industrial water data. It includes a 

literature review of AI and ML in the water treatment sector, a 

presentation of the developed platform and its microservices, and 

an overview of selected methods, algorithms and models that 

have been developed to support the use case requirements. 

Given that it is an intermediate version of the deliverable, it does 

not report on the results obtained using the Analytics Platform in 

the use cases, which is work under way and will be reported in the 

final version of the same deliverable. 

 

   

  



 

3 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

Document History 

VERSION ISSUE DATE DESCRIPTION CONTRIBUTOR 
0.1 01/05/2023 Table of Contents 

shared with partners 

ICCS 

0.2 16/11/2023 Final draft for review ICCS 

1.0 30/11/2023 Final for submission ICCS 

 

Disclaimer 

Any dissemination of results reflects only the author's view and the European Commission is not 
responsible for any use that may be made of the information it contains. 

 

Copyright message 

© AquaSPICE  Consortium, 2023 
This deliverable contains original unpublished work except where indicated otherwise.  
Acknowledgement of previously published material and of the work of others has been made through 

appropriate citation, quotation, or both. Reproduction is authorised if the source is acknowledged. 

 

  



 

4 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

TABLE OF CONTENTS 

1. Executive summary ................................................................................................................ 8 

2. Introduction ........................................................................................................................... 9 

3. Review of AI and analytics approaches in the water treatment domain ............................. 10 

3.1. Introduction ............................................................................................................ 10 

3.2. Literature Review Methodology .............................................................................. 10 

3.3. Application Areas .................................................................................................... 12 

3.3.1. Instrumentation and Software Sensoring .......................................................... 12 

3.3.2. Optical monitoring ............................................................................................. 12 

3.3.3. Process monitor & control (fault detection, diagnosis, and prognosis) ............. 13 

3.3.4. Outlier detection ................................................................................................ 13 

3.3.5. Performance evaluation ..................................................................................... 13 

3.4. Analysis of existing approaches ............................................................................... 13 

3.4.1. Water Quality Prediction ................................................................................... 13 

3.4.2. Anomaly, Outlier and Fault Detection ................................................................ 15 

3.4.3. Process simulation, optimization and control .................................................... 16 

3.4.4. Soft Sensors ....................................................................................................... 19 

3.5. Synthesis of Findings and Propositions ................................................................... 20 

3.5.1. Offline vs. real-time processing approaches ...................................................... 20 

3.5.2. Targeted and Actionable Analytics ..................................................................... 21 

3.5.3. Synergies with First Principle Models ................................................................ 21 

3.5.4. Knowledge Sharing with Analytics ..................................................................... 23 

4. AquaSPICE Analytics Platform .............................................................................................. 24 

4.1. Review of Relevant Technologies ............................................................................ 24 

4.2. Architecture ............................................................................................................ 25 

4.3. Development........................................................................................................... 28 

4.4. Implementation ...................................................................................................... 31 

5. AI and Analytics Methods, Algorithms & Models ................................................................ 36 

5.1. Descriptive Analytics ............................................................................................... 36 

5.2. Predictive Analytics ................................................................................................. 39 

6. Conclusions and Next Steps ................................................................................................. 44 

7. References ........................................................................................................................... 45 

 

 



 

5 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

LIST OF FIGURES 

Figure 1 : Data analytics types. (adapted from [1]) ...................................................................... 10 

Figure 2: Architecture and High-level Data Flow Diagram ........................................................... 27 

Figure 3: The Technology Stack of the Developed Platform ........................................................ 30 

Figure 4: Data Analytics Workbench - Home Page ...................................................................... 31 

Figure 5: Data Analytics Workbench - Data Page ......................................................................... 32 

Figure 6: Data Analytics Workbench - Experiments Page: Logs ................................................... 33 

Figure 7: Data Analytics Workbench - Experiments Page: New Experiment................................ 33 

Figure 8: Data Analytics Workbench - Model Page: Model Listing .............................................. 34 

Figure 9: Data Analytics Workbench - Algorithms Page ............................................................... 34 

Figure 10: Data Analytics Workbench - Monitoring Page ............................................................ 35 

Figure 11: Descriptive Statistics Table Sample ............................................................................. 36 

Figure 12: Multivariate Line Plot Sample ..................................................................................... 37 

Figure 13: Sample Univariate Line Plot for Humidity ................................................................... 37 

Figure 14: Sample Violin Plot of Humidity ................................................................................... 38 

Figure 15: Time Series Decomposition of Humidity Samples ...................................................... 39 

Figure 16: LSTM Cell (adapted from [54]) .................................................................................... 40 

Figure 17: Model Training RMSE and MAE .................................................................................. 40 

Figure 18: Line Plot of Sample Predicted vs Actual Values .......................................................... 41 

Figure 19: Isolation Forest: Trees and Scores [56][55] ................................................................ 42 

Figure 20: Multivariate Anomaly Detection using Isolation Forest in Cooling Tower Data: Top 5 

Contributing Features .................................................................................................................. 42 

Figure 21: Univariate Anomaly Detection: Line Plot of Humidity and Detected Outliers ............ 43 

 

LIST OF TABLES 

Table 1. Literature Review Fundamental Queries and Results 11 

Table 2. Distribution of the final papers throughout the years 12 

Table 3. Number of papers per publisher 12 

Table 4: Data Analytics Methods for Water Quality Prediction in Reviewed Literature 14 

Table 5. Data Analytics Methods for Anomaly, Outlier and Fault Detection in Reviewed Literature

 16 

Table 6. Data Analytics Methods for Process Simulation, Optimization and Control in Reviewed 

Literature 17 

Table 7:Data Analytics Methods for Soft Sensors in Reviewed Literature 20 

Table 8: Experiment Tracking Tools Comparison: Pros and Cons 25 

 

  



 

6 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

ABBREVIATIONS/ACRONYMS 

 

Parameters 

BOD Biochemical Oxygen Demand 

BOD₅ Biochemical Oxygen Demand test run for 5 days) 

COD Chemical Oxygen Demand 

DO Dissolved Oxygen 

EC Electrical Conductivity 

F/M Food to Microorganism 

MLSS Mixed Liquor Suspended Solids 

MLVSS Mixed Liquor Volatile Suspended Solids 

N Nitrogen 

SS Suspended Solids 

T-N Total Nitrogen 

T-P Total Phosphorus 

TDS Total Dissolved Solids 

TS Total Solids 

TSS Total Suspended Solid 

 

 

Machine Learning & Statistics 

 

AANN Autoassociative Neural Networks  

AMGA Adaptive Merging and Growing Algorithm 

ANN Artificial Neutal Network 

ANOVA Analysis of Variance 

CFL Committee Fuzzy Logic 

FL Fuzzy Logic 

FS-RBFN Flexible Structure Radial Basis Function NN 

GA Genetic Algorithm 

LFL Larsen FL 

LSTM Long-Short Term Memory 

MAPE Mean Absolute Percentage Error 

MFL Mamdani FL 

MLP Multi Layer Perceptron 

MLR Multivariate Linear Regression 

MRAN Minimal Resource-Allocating Network 

MSE Mean Squared Error 

NAR Nonlinear Autoregressive 

NSE Nash-Sutcliff Efficiency 

r Coefficient of correlation 

R2 

RBF 

Coefficient of determination 

Radial basis function 

RFNN Recurrent Fuzzy Neural Network 

RMSE Root Mean Square Error 



 

7 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

RVM Relevant Vector Machine 

SCFL 

SenV-RBF 

Supervised Committee Fuzzy Logic 

Sensitivity-based RBF 

SVM Support Vector Machine 

TSFL Takagi-Sugeno FL 

VBPCA Variational Bayesian Principal Component Analysis 

XGBoost Extreme Gradient Boosting 

 

 

Stages 

BIO Bioreactor 

BT_C Bioreactor Pit C 

BT_N Bioreactor Pit N 

Clari Clarifier 

D Discharge Pit 

EQ Equalizer 

OxT Oxydation Tank 

 

 

Miscellaneous 

MBR Membrane Bioreactor 

TMP Transmembrane Pressure 

WWTP Wastewater Treatment Plant 

WRC Water Reclamation Plant 

BSM 1 Benchmark Simulation Model 1 

Type-I error false alarm rate 

Type-II error faulty detection rate 

KG Knowledge Graph 

API Application Programming Interface 

 

 

Publishers 

IASE Institute of Advanced Science Extension 

IEEE Institute of Electrical and Electronics Engineers 

IOP Institute of Physics 

IWA International Water Association 

MDPI Multidisciplinary Digital Publishing Institute 

INFORMS Institute for Operations Research and the Management 

Sciences 

 

  



 

8 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

1. Executive summary  
Industrial water management can benefit from the advances in AI, computational power, 

and IoT. In industrial processes it is increasingly usual to continuously generate different 

types of data at high velocity, implying that data can rapidly gain high volume. AI and ML 

techniques can be leveraged to effectively analyze high dimensional data to provide 

insights, find latent patterns, detect anomalies, predict future values, and prescribe 

actions to assist in the decision-making process. AI models can offer significant value by 

enhancing process monitoring & optimization, fault diagnosis, and prognosis in complex 

engineering systems, like water treatment plants. However, the process of creating and 

fine-tuning AI and ML models for real-world applications is a challenging and time-

consuming task that typically includes numerous trials and experiments. Additionally, the 

experiment conduction, model selection and deployment require the collaboration of 

data scientists, domain experts, and software engineers.  

This deliverable covers the development of the AquaSPICE Analytics Platform and the 

demonstration of the statistical and machine learning methods to produce descriptive 

analytics and the ML and AI techniques to create predictive models for forecasting and 

anomaly detection. It begins with a concise literature review of AI and data analytics 

techniques in the field of water treatment. Next, it demonstrates the Analytics Platform 

architecture, with an emphasis on the Data Analytics Workbench service, which enables 

analysts to execute ML experiments and manage models for deployment and use by the 

Data Analytics Service. Following that, the document presents the AI and analytics 

algorithms, and methods used in descriptive and predictive analytics along with 

visualizations of their results. Finally, it ends with the conclusions and next steps. Given 

that it is an intermediate version of the deliverable, it does not report on the results 

obtained using the Analytics Platform in the use cases, which is work under way and will 

be reported in the final version of the same deliverable. 
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2. Introduction 

This deliverable reports in the intermediate results of task T4.5, which develops data-

driven, data analytics platform for developing and deploying methods enabling the real-

time analysis of water treatment process data for the detection of current and emerging 

situations that require attention specific remedial actions (e.g., anomalies). Typical cases 

of such situations include emerging water efficiency problems (e.g., in terms of both 

quantity and quality), posing the need for adaptation or optimization of the relevant 

processes, e.g., the production or water recovery-treatment-reuse processes.  

The proposed data analytics platform supports both descriptive and predictive models. 

Descriptive analytics methods provide a statistical interpretation used to analyze 

historical data to identify patterns and relationships. Descriptive analytics seeks to 

describe an event, phenomenon, or outcome. It helps understand what has happened in 

the past and provides operators and engineers the base to track trends in the treatment 

process. Predictive analytics is the process of using data to forecast future outcomes. The 

process uses data analysis, machine learning, artificial intelligence, and statistical models 

to find patterns that might predict future behavior. 

A specific but widespread case of data analytics is anomaly detection. Our work includes 

an anomaly detection service, which yields the following results: anomalous events, 

anomalies based on complex event processing, risk prediction, and root cause analysis 

for detected anomalies/problems.  

The goals of the proposed analytics platform include: 

- Facilitate the complete life-cycle of analytics operations, from design to 

deployment and monitoring.  

- Allow retrieval and exchange of analytics models between data analysts and 

domain experts (engineers) during the phases of problem understanding, data 

understanding, and evaluation by creation of analytics models and methods. 

- Allow experimentation and fine-tuning of analytics models and pave the way for 

integration data analytics methods and first-principle models. 

- Leverage the evaluation of the impact of analytics methods on the key 

performance indicators (KPIs). 

The AquaSPICE data analytics platform utilizes and exploits: (i) real-time data from 

sensors related to the production process and water recovery-treatment-reuse; (ii) 

historical data from legacy and operational systems; (iii) expert knowledge and real-life 

feedback from relevant stakeholders in the production value chain. Upon problem 

detection, expert knowledge is coupled with machine learning approaches to allow a 

data-driven understanding of the underlying causal relations.  

The developed data analytics service design is being encapsulated as a module for the 

Digital Twin’s KG, with an API to allow exporting the services to other modules. Given that 

it is an intermediate version of the deliverable, it does not report on the results obtained 
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using the Analytics Platform in the use cases, which is work under way and will be 

reported in the final version of the same deliverable. 

3. Review of AI and analytics approaches in the 

water treatment domain 

3.1. Introduction 
In this section we review prominent approaches that utilize data analytics in water 

treatment processes. The four rudimentary types of data analytics that are also applied 

and benefit water treatment processes are descriptive, diagnostic, predictive, and 

prescriptive. Data analytics provide methods to understand what happened, why 

something happened in the past, what could happen next, and what should happen in 

the future (Figure 1). 

Descriptive analysis explains events over time; this type of data analytics produces 

reports by analyzing information to determine the current status of a process in a way 

that highlights patterns and exceptions. Diagnostic analytics focus on the root cause of 

the occurrence of an event, trying to provide answers to questions like “why it 

happened”. Predictive Analytics focuses on events that are expected to happen in the 

future, framing answers to questions such as what is likely to happen in the future; to 

compute future probabilities, machine learning, and statistical methods are used [1][2]. 

Prescriptive analytics focuses on making intelligent decisions toward process 

optimization based on predictive analytics results [1][2][3]. 

 

Figure 1 : Data analytics types. (adapted from [1]) 

3.2. Literature Review Methodology 
Our review adopts the systematic method and the approach proposed by Tranfield et al. 

[4]. Systematic reviews and meta-analysis originally appeared in medical science research 

[5]. Efforts were made to include systematic method in other disciplines such as business 
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research [4][7]. Although their guidelines were initially proposed for the management 

discipline, they are suitable for systematic reviews of various sectors [7]. 

An initial search was conducted in August 2022, followed by a complementary search in 

February 2023. The online citation databases considered in this review were Scopus, 

Google Scholar, Emerald. Our research focuses on articles and conference publications 

of the last decade; therefore, the results were narrowed to the period from 2011 to 2021. 

To ensure the results’ quality, the publishing companies considered are the following: 

Elsevier ScienceDirect, MDPI, IOP, IEEE, Emer, Springer and IWA.  

To derive articles related to the data analysis lifecycle in water treatment, the main search 

term was “wastewater analytics”. A summary of the queries and the number of the initial 

results are presented in Table 1. Due to the limited relative results, we also tried other 

keywords combined with the basic term “wastewater” such as “monitoring”, “smart”, 

“machine learning”, “online monitoring” and topic-specific terms such as “membrane 

fouling” and “digital twins”. 

Table 1. Literature Review Fundamental Queries and Results 

Database Query #Results 

Scopus TITLE-ABS-KEY ( "wastewater analytics"  OR  "wastewater"  AND  

"analytics" )  AND  PUBYEAR  >  2011  AND  ( LIMIT-TO ( PUBSTAGE ,  

"final" ) )  AND  ( LIMIT-TO ( DOCTYPE ,  "ar" )  OR  LIMIT-TO ( DOCTYPE 

,  "cp" ) )  AND  ( EXCLUDE ( PUBYEAR ,  2023 )  OR  EXCLUDE ( PUBYEAR 

,  2022 ) )  AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  AND  ( LIMIT-TO 

( EXACTKEYWORD ,  "Wastewater Treatment" )  OR  LIMIT-TO ( 

EXACTKEYWORD ,  "Wastewater" )  OR  LIMIT-TO ( EXACTKEYWORD ,  

"Waste Water" ) ) 

103 

Google Scholar “wastewater analytics” 20 

Emerald (content-type:article) AND (wastewater analytics) 40 

 

Search results were refined in three main iterations to elicit each article’s relatedness to 

the subject matter. First, if the title or the abstract is pertinent then the article passes 

directly to the next phase. Second, the full corpus of the remaining articles was leafed 

through to exclude irrelevant ones. Finally, all the selected articles were read extensively, 

shaping the final set for the review. During the iterations, all duplicate articles were 

removed and the following reasons for exclusion were considered:  

• Irrelevant subject 

• Review articles 

• Not quantitative 

• Absence of data analytics techniques 

The final set of articles consists of 21 items; their distribution throughout the years and 

the publishers is shown in Table 2 and Table 3, respectively. 
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Table 2. Distribution of the final papers throughout the years 

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 

Papers 1 0 1 2 1 1 4 3 2 2 3 

 

Table 3. Number of papers per publisher 

Publisher Papers 

Elsevier 12 

INFORMS 1 

IWA 1 

MDPI 3 

Springer 1 

Taylor & Francis 2 

 

3.3. Application Areas 
The application areas of data analytics in water treatment as elicited from literature are 

briefly described in this section. Water quality is a significant concern throughout most 

of the articles and the water treatment process itself, thus it was not considered as an 

application area. Water quality refers to recommended standards for the quality of the 

final effluent or the inflow of a water treatment plant and is determined by measuring 

water quality indicators against parametric standard values and regulatory requirements. 

Water quality indicators include physical, chemical (inorganic and organic) and 

microbiological characteristic parameters [8][9]. 

3.3.1.  Instrumentation and Software Sensoring 

A variety of measurement and analysis instruments are utilized in water treatment 

processes; turbidity, pH analyzers and water quality sensors, to name a few. Along with 

the hardware development, advancements in big data analytics and software sensors 

promote online monitoring and lessen the dependency on hardware sensors [11][12]. 

A soft sensor (“software sensor”) is a software that estimates a hardware-like signal. It is 

utilized to indirectly measure variables that are difficult to measure due to cost or 

technical limitations. Soft sensors use process data as input to a model that predicts the 

target variable values. The process data can typically be obtained relatively easily and are 

composed of signals from hardware sensors and actuators. The prediction model can be 

classified as data-driven, knowledge-based, or hybrid [13][14][15]. 

3.3.2.  Optical monitoring 

Optical monitoring of water is typically performed via examining the water samples 

manually under a microscope [16][17]. Advances in optical monitoring devices, IoT and 

data analysis allow modern approaches to suggest real-time (online) optical monitoring 

for rapid in-situ transmittance measurements. Online optical monitoring combined with 

image analysis methods and possibly predictive models could provide useful insights to 

control and optimize the water treatment process [17][18]. 
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3.3.3.  Process monitor & control (fault detection, diagnosis, and prognosis) 

Advanced monitoring systems enhance the control of the water treatment process by 

detecting malfunctions, and sensor faults and identifying abnormal process operations or 

conditions [12][19]. 

3.3.4.  Outlier detection  

Outlier detection concerns the identification of observations that fall outside of an 

expected distribution or pattern; such abnormal observations are called outliers or 

anomalies [20]. 

3.3.5.  Performance evaluation 

The performance of a treatment plant is evaluated via the degree of reduction of BOD, 

COD and SS, which constitute organic pollution [21]. The performance efficiency of 

treatment plant depends not only on proper design and construction but also on good 

operation and maintenance [22][23].  

 

3.4. Analysis of existing approaches 
In this section, we further discuss the methods that have been used in literature. 

3.4.1.  Water Quality Prediction 

Han et al. [24] proposed the Flexible Structure Radial Basis Function Neural Network (FS-

RBFNN) to develop a water quality prediction model for wastewater treatment systems. 

The self-organized architecture of the RBFNN is assumed from neuron activity and mutual 

information (MI). The model was tested in forecasting the Biochemical Oxygen Demand 

(BOD) of effluent in a wastewater treatment process through a simulation; its accuracy 

was better compared to other self-organizing algorithm models, namely Adaptive 

Merging and Growing Algorithm (AMGA), sensitivity-based Radial basis function (SenV-

RBF), minimal resource-allocating network (MRAN) and generalized growing and pruning 

RBF (GGAP-RBF). 

Zare Abyaneh [25] evaluated Multivariate Linear Regression (MLR) and Artificial Neural 

Network (ANN) models in BOD and Chemical Oxygen Demand (COD) prediction of a 

Wastewater Treatment Plant (WWTP) using minimum input parameters. The data 

consisted of laboratory measurements throughout 7 years. The ANN model 

outperformed the MLR and both models appear to predict BOD more accurately. The 

study suggests that the type of parameters is more significant than their number. 

Guo et al. [26] developed and compared ANN and Support Vector Machine (SVM) to 

predict Total Nitrogen (T-N) concentrations of effluent for integrated food waste and 

wastewater treatment processes. Meteorological and water quality data were recorded 

daily during a ten-month period; the latter were produced by laboratory and in situ 

measurements while the samples were collected from various spots of the wastewater 

treatment plant. Although both models were sufficient in predicting concentrations, SVM 

showed higher accuracy. Additionally, a sensitivity analysis was applied and considered 
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the ANN as a better choice through the prism of cause-and-effect relationship between 

T-N and input parameters. 

Tomperi et al. [17] examined the dependencies between process variables and optical 

measurements, aiming to use optical monitoring to predict common water quality 

parameters in a WWTP. In-situ optical monitoring was performed by a high- resolution 

charge-coupled device camera in a real WWTP for over one year. Image analysis variables 

combined with laboratory process data formed the data set of the experiment. The input 

variables were selected through five variable selection methods and the prediction model 

for each water quality parameter was developed using MLR. The study highlights the 

advantages of online optical monitoring. 

Tomperi et al. [27] also demonstrated the prediction of five effluent water quality 

parameters using MLR and solely optical monitoring variables as inputs. The wastewater 

samples for the automatic optical monitoring were collected from an industrial activated 

sludge process of a pulp and paper industry for 13 months. All models were sufficient, 

resulting that optical monitoring in combination with predicting models could be a 

powerful tool in process control. 

Nadiri et al. [28] introduced a Committee Fuzzy Logic (CFL) and a supervised CFL model 

that synthesizes three Fuzzy Logic (FL) models to simulate wastewater treatment plant 

operations and predict effluent quality. In the CFL model the predictions emanate from 

linear combinations of the FL models, whereas in the Supervised Committee Fuzzy Logic 

(SCFL) the FL model outputs were combined as inputs to an ANN that constitutes the final 

prediction. Historical data composed the training and evaluation dataset. As a result, the 

CFL model performed better than the individual FL models and the SCFL further improved 

the predictions’ accuracy. 

Table 4 below consolidates the key findings discussed in this section. 

Table 4: Data Analytics Methods for Water Quality Prediction in Reviewed Literature 

Paper Data source Analytics methods  Input Output Evaluation 

[24] Historical FS-RBFNN COD, SS, pH, 

oil, NH3–N 

BOD MSE 

RMSE 

CPU time 

[25] Laboratory ANN-MLP 

MLR 

TSS, TS, pH, 

Temperature 

BOD, COD r 

RMSE 

bias values 

[26] Laboratory 

In situ 

ANN 

SVM 

month, 

volumetric 

inflow flow 

rate, TSS, 

COD, T-N, T-P, 

temperature, 

pH 

T-N R2 

NSE 

relative 

efficiency 

criteria (drel) 
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[17] In situ optical 

monitoring  

Laboratory 

MLR different 

variables per 

model 

SS 

BOD 

COD 

T-N 

T-P 

(Separate 

models) 

RMSE 

R2 

[27] In situ 

samples 

MLR optical 

monitoring 

variables 

(amount of 

filaments, 

fractal 

dimension, 

form factor, 

roundness, 

aspect ratio, 

equivalent 

diameter, 

mean area of 

objects, 

number of 

small objects) 

(BOD, COD, 

SS, N, P) of 

effluent 

R2 

RMSE 

coefficients of 

regression 

[28] Historical SCFL 

ANN 

CFL 

TSFL 

MFL 

LFL 

(BOD, COD, 

TSS, 

Temperature, 

pH) of influent 

(BOD, COD, 

TSS) of 

effluent 

MAPE 

RMSE 

R2 

 

3.4.2. Anomaly, Outlier and Fault Detection 

Lepot et al. [29] conducted outlier detection and identification of most representative 

spectrum in repetitive spectral recording of wastewater samples, using Principal 

Component Analysis (PCA) and Data Depth Theory (DDT). Ultraviolet-visible (UV-Vis) 

spectrophotometers collected data from a WWTP in France for four days and a Moving 

Bed Biofilm Reactor (MBBR) at a WWTP in Switzerland for ten weeks. The results were 

promising, revealing weaknesses and strengthens of the selected methods. 

Chow et al. [30] proposed a real-time anomaly detection system for early warning, using 

an online UV-Vis spectrophotometer, k-means and visual exploration. The device was 

placed at the inlet of a WWTP and was collecting data for eighteen months. A developed 

portal was responsible for the data integrations, visualizations and data analytics 

procedures. The system was evaluated in an operational environment. 

The two papers are summarized in the following table (Table 5). 



 

16 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

Table 5. Data Analytics Methods for Anomaly, Outlier and Fault Detection in Reviewed Literature 

Paper Data source Analytics 

methods 

Input Output Evaluation 

[29] UV/Vis 

spectrophotometer 

Data depth 

theory 

PCA 

France: spectral 

data and for 

each sample: 

TSS, total, 

dissolved COD 

Switzerland: 

spectral data, 

ammonium, 

nitrite 

and nitrate 

concentrations 

Outliers in 

repetitive 

spectra 

Confusion 

matrix 

Consistency 

ratio 

[30] online UV-Vis 

spectrophotometer 

visual 

exploration 

k-means 

correlation 

analysis 

spectral data  

logs 

Abnormal 

inlet water 

quality 

Correlation 

coefficients 

against logs 

 

3.4.3. Process simulation, optimization, and control 

An in-depth review of data-driven approaches for the analysis of a WWTP performance 

is provided in [59], also discussing the importance of data-driven decision-making in plant 

operation optimizations. 

Boujelben et al. [22] investigated the performance of four wastewater treatment plants 

applying Redundancy analysis (RDA), Analysis of Variance (ANOVA) and Duncan test. 

During the four-year study, physicochemical and biological properties, flow rates, energy 

consumption and water quality indicators were collected from laboratory analyses, in-

situ measurements and external sources. The multivariate analysis showed that 

differences in capacity, treatment processes or properties of influence affect the 

performance of the WWTP, which can be improved by a proposed electrolysis of the 

output wastewater. 

Zadorojniy et al. [31] examined reinforcement learning, multivariate adaptive regression 

splines and Constrained Markov Decision Process (CDMP) analytical approaches to 

reduce the costs and improve the efficiency in a WWTP. The CDMP was comparatively 

faster and of higher quality. They built a simulation model and plant-state estimators 

using historical data from a real WWTP. A transition probability matrix models the process 

behavior of the plant. Finally, the CMDP optimization unit provides optimal 

recommendations. The pilot ran for a year in a real WWTP achieving cost reduction 

alongside other benefits. The solution remains to be applied in larger plants to ensure its 

generalization. 

Arismendy et al. [32] developed an intelligent system to support decision making in 

WWTP through COD prediction and visualizations. Time-series decomposition, 

autoregression and ANN were utilized to succeed the COD forecast. The dataset 

employed in the study contained almost two and a half years of daily sample 
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measurements of major water quality parameters. A web-based platform was also 

designed to monitor the predictions, present data visualizations, and allow access to the 

historical data. 

Arismendy et al. [33] also presented a data driven decision making system that prescribes 

actions to optimize the processes of an industrial WWTP, based on predictive data and 

expert’s knowledge. Long-Short Term Memory (LSTM) ANN and decision tree algorithm 

are utilized to develop the prediction model and the estimation algorithm respectively, 

using the forementioned dataset. A genetic optimization algorithm is designed targeting 

the COD value. Future work is said to include more variables and finalize the proposal. 

Asami et al. [23] developed and compared ANN and M5 model tree in simulating and 

predicting the performance of a WWTP and its effluent water quality. A dataset was 

created mainly from an online wastewater analyzer’s daily measurements of water 

quality parameters for three years. The evaluation proved ANN to be superior to M5 

model tree, although both models appeared reliable and could be used in missing data 

estimations and environmental decisions. 

Xiao et al. [34] suggested a fault diagnosis and prognosis framework that combines auto-

associative neural networks and Autoregressive Moving Average (ARMA) model, 

respectively. A recursive minimization strategy is proposed to handle missing data values. 

Furthermore, Kernel Density Estimation (KDE) control limit was developed to reduce 

type-I and type-II errors. The models were built and evaluated with simulated WWTP 

process data. Shallow and deep ANN were compared to and surpassed PCA and kernel 

PCA models. The framework detected sensor and process faults successfully; additionally, 

the ARMA model was capable of multi-step-ahead Squared Prediction Error (SPE) 

prediction. 

Andersson et al. [35] proposed a tool to predict future environmental impacts of different 

WWTP operations and influent conditions, combining process simulation and influent 

generation models with Life Cycle Assessment (LCA) models. Process models were used 

to simulate three real WWTPs and the experiment was examined in different scenarios. 

The following table (Table 6) provides a concise summary of the literature findings that 

were discussed in this section. 

Table 6. Data Analytics Methods for Process Simulation, Optimization and Control in Reviewed Literature 

Paper Data source Analytics 

methods 

Input Output Evaluation 

[22] Laboratory 

In situ 

external 

sources 

RDA 

ANOVA 

Duncan test 

electrical 

conductivity, 

salinity, 

chlorides, flow 

rate, energy, 

data on rainfall, 

COD, BOD, 

energy 

efficiency, TSS, 

n/a n/a 
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TKN, NH4
+, NO3

-, 

TP, removal 

efficiency, faecal 

coliforms, faecal 

streptococci, 

detection of 

Salmonella and 

Vibrio cholera, 

Pb, Cu, Ni, Zn, Cr, 

Cd, electrolysis 

[31] Historical 

sensor data 

Simulation 

Three-step 

interpolation 

algorithm 

Transition 

probability 

matrix 

Multivariate 

Adaptive 

Regression 

Splines 

(MARS) 

Constrained 

Markov 

decision 

process 

(CDMP) 

state variables: 

{influent flow 

rate, feedback, 

effluent total 

nitrogen 

concentration, 

effluent total 

phosphorus 

concentration, 

period, total 

cost} 

action 

variables: 

{DO set 

point, 

waste-

activated 

sludge 

pump rate, 

Internal 

recycle 

pump rate} 

Comparison of 

policies after 2 

years of pilot 

[32] Historical data 

from different 

stages of 

WWTP 

ANN-MLP Flow, COD 

influent, SS, 

MLSS, MLVSS, N, 

pH, DO, F/M 

COD MAPE 

MSE 

[33] Historical data 

from different 

stages of 

WWTP  

i. LSTM 

ii. Decision 

Tree 

iii. GA 

i. {BT_C_MLVSS, 

D_SS, EQ_N, 

Clari_DO} more 

than once on 

different days 

ii. {EQ_N 

OxT_PH_PM} 

more than once 

on different days 

iii. pH setpoints 

i. EQ_COD 

ii. EQ N 

iii. best pH 

MAPE 

Mean & 

standard 

deviation 

T-student & F-

Fisher test 

Box & whisker 

plot 

comparison 

[23] online 

wastewater 

analyzer  

TSS 

St.M.2540-D 

ANN 

M5 model 

tree 

temperature, 

turbidity, pH, EC, 

TDS, TSS, DO, 

BOD₅, COD of 

the inlet 

BOD₅, COD, 

TSS of 

output 

R2 

R2
adjusted 

RMSE 

Standard error 

of the 

estimate 

[34]  BSM 1 

simulation 

SANN  

DANN 

KPCA 

ARMA 

process data SPE SPE 

Type-I error 

Type-II error 

[35] process 

simulation: 

BSM2G 

LCA models 

Influent 

Generation 

model 

influent 

generator BSM-

UWS model 

(scenarios) 

Environmen

tal impacts 

of future 

processes 
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influent 

generation: 

BSM-UWS 

Biochemical 

process 

models 

 

3.4.4.  Soft Sensors 

A comprehensive study of the role and scope of soft sensoring methods and models has 

been performed by Haimi et al. [60]. Liu et al. [12] developed a probabilistic self-validating 

software sensor that handles missing and abnormal values and produces interval 

predictions. Variational Bayesian Principal Component Analysis (VBPCA) is used to detect 

faults and to reconstruct the corresponding value at the pre-process stage; contribution 

plots are then utilized to identify the root of the disturbance. Relevant Vector Machine 

(RVM) was selected as the prediction model that also considers uncertainties from 

parameters and noise. The soft-sensor application was trained in simulation data and was 

evaluated in two simulation case studies. 

Blanco-Rodríguez et al. [36] employed an electronic nose to discriminate odors and 

predict their concentration, composing a qualitative and quantitative analysis. The data 

was collected via flux chamber and direct sampling from six possible odor sources in an 

urban WWTP. PCA was used for odor pattern identification and Partial Least Squares (PLS) 

regression for the prediction. The authors concluded that e-nose constitutes a reliable 

and economic tool for wastewater treatment monitoring. 

In Moreira de Lima & Ugulino de Araújo [37] a deep representative learning soft-sensor 

modeling approach named MISAEL is presented for industrial plants. MISAEL integrates 

Mutual Information (MI) based stacked autoencoders (SAE) with LSTM. After every SAE 

layer that extracts the hidden features, an MI analysis is performed to reduce irrelevant 

information; LSTM networks are then utilized to produce the final result. Two existing 

industrial case studies were considered to train, test and validate the approach. MISAEL 

and ensemble MISAEL, that includes a k-fold cross-validation, outperformed other 

methods under the same conditions.  

The key results are summarized in the table below (Table 7). 
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Table 7:Data Analytics Methods for Soft Sensors in Reviewed Literature 

Paper Data source Analytics 

method  

Input Output Evaluation 

[12] BSM 1 

simulation 

VBPCA 

RVM 

{COD, NH4
+, NH3 

nitrogen, Nitrate and 

nitrite nitrogen, BOD, 

Flow rate, Oxygen} 

{BOD, COD, pH, 

Suspended solids, 

Sedimentable solids}  

BOD, COD r 

RMSE 

LS-SVM 

PLS 

[36] direct 

sampling 

flux chamber 

sampling 

PLS 

regression 

PCA 

e-nose and 

olfactometry outputs 

odour 

concentration 

RMSE 

R2 

[37] pre-existing 

datasets: 

i. Debutanizer 

column 

ii. Sulfur 

Recovery Unit 

SAE LSTM i. {top temperature, 

top pressure, reflux 

flow, flow to next 

process, sixth tray 

temperature, bottom 

temperature A, 

bottom temperature 

B}  

ii. {gas flow, air flow, 

secondary air flow, 

gas flow in SWS zone, 

air flow in SWS zone} 

i. Butane C4 

content in IC5 

ii. Concentration of 

SO2in the tail gas 

R2 

RMSE 

Comparison 

 

3.5. Synthesis of Findings and Propositions 
Towards the adoption of data analytics for industrial water treatment by AquaSPICE, we 

synthesize the challenges derived from the literature review and we outline potential 

directions for future research. 

3.5.1.  Offline vs. real-time processing approaches 

According to our literature review, real-time processing and analysis of data has not been 

well exploited; most of the reviewed papers deal with offline analysis of data. However, 

the wide adoption of sensors in modern industries has led to an increasing demand for 

real-time analytics. Apart from the technical challenges that exist in developing scalable 

and efficient sensor-driven information systems [38][39], there is also the need for 

bespoke and algorithms for data analytics, which can process data with time-varying 

characteristics and thus can solve problems utilizing large scale streaming data. For 

example, recursion-based data analysis algorithms can be applied in cases where a 

problem that depends on solving smaller instances of the same problem.  
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Proposition 1: The development of real-time, sensor-driven data analytics systems and 

recursive algorithms can promote the adoption of water analytics in industrial 

applications. 

The computational challenges are even higher when analytics algorithms need to be 

developed for distributed platforms [38], i.e. platforms with components that are located 

in different networked computers, communicating and coordinating their actions by 

passing messages to each other [40]. Water analytics in industrial applications can 

significantly benefit from distributed computing for processing large amounts of 

unstructured, semi-structured and structured big data. The AquaSPICE water analytics 

platform has been designed so that it can cope with both batch and streaming data and 

has provisions for distributed processing of big data. 

Proposition 2: Water analytics in industrial applications can benefit from distributed 

computing for processing large amounts of data. 

3.5.2. Targeted and Actionable Analytics 

Expertise in data analytics, it is not enough to be versed in analytics in an industrial 

domain such as water treatment. One needs to understand how to use analytics to solve 

the specific water management problems. This requires insight into the data themselves 

as well as the targeted problems. Typical problems in process industries and other 

industries with large water processing needs are, for example, control and optimization 

problems. For example, controlling the water flows can benefit from influent and effluent 

stream flow predictions while prescriptive analytics can facilitate the optimization of 

water flows and treatment processes. Water analytics provide the ability to leverage 

optimization — the primary prescriptive analytics tool — to find solutions to complex 

problems and make optimal decisions. The AquaSPICE data analytics platform will provide 

generic descriptive, predictive and prescriptive methods but will also cater for the 

development and deployment of bespoke methods required to address targeted 

requirements. Moreover, it will synergistically couple with the optimization component 

of WaterCPS to enable holistic decision making in complex scenarios requiring both data-

driven analytics and model-driven optimizations. 

Proposition 3: Water analytics in industrial applications should include prescriptive 

analytics methods that leverage control and optimization of industrial processes. 

3.5.3.  Synergies with First Principle Models 

The cost, time and skill required to develop application-specific models have been 

barriers to using first-principle modelling tools in industrial water treatment processes. 

First-principle models require in depth understating of the underlying physical and 

chemical phenomena, underpinning processes as well as experimental data or/and 

statistical methods to estimate model parameters. They are not as quick and easy to 

build, but they have many advantages. In terms of simulation, first-principle models 

provide extrapolation in addition to the interpolation provided by data-driven models, 

but they also can be used for monitoring, control and optimization. 
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There has been growing interest in blending physical and machine learning models to 

leverage their respective strengths in many fields including weather forecasting, 

biological systems, materials chemistry, mechanical failure, battery health, and battery 

safety [41]. Several possible integration architectures for physics based and machine 

learning models are outlined in [41]. At a high level, there are two broad categories for 

health forecasting: (A) serial integration of independent models and (B) hybridized PB and 

ML models. The former category involves architectures more viable in the near term as 

they can be realized by integration of existing ML and PB tools without any fundamental 

changes. The latter category will require the development of new approaches. 

In the water treatment domain, existing works have focused on employing a priori 

knowledge to reveal relationships between subsets of regression parameters that serve 

to restrict their range as well as on constrained regression, i.e., restricting the original 

problem in the space of predictor and response variables [42]. Existing works have shown 

that combining data-driven and theory-driven models results in higher quality surrogate 

models. The improvements are measured by both physical relevance and model 

accuracy. We aim to take advantage of such approaches; specifically, we will work 

towards the development of calibration methods for first-principle methods based on 

data-driven methods as well as other synergistic approaches to address emerging 

decision making requirements. 

Proposition 4: Water analytics in industrial applications can benefit from theory-driven 

models and should be considered for setting limits on the response variables; establishing 

known relationships between response and root-cause variables; and relationships 

among responses. 

Further research is needed towards the direction of combining the ‘learned knowledge’ 

of machine learning and data mining methods with the ‘engineered knowledge’ elicited 

from domain experts. To this end, the combined use of machine learning and knowledge 

engineering can complement each other’s strengths and mitigate their weaknesses, since 

explicitly represented application knowledge could assist data-driven machine-learning 

approaches to converge faster on sparse data and to be more robust against noise. 

With the advancements in big data technologies, artificial intelligence has become an 

important element of digital systems, because, among others, they make a profound 

impact on human decision making [43]. As a result, there is an increasing demand for 

information embedding artificial intelligence and machine learning algorithms for 

decision making [43]. In this way, there will be the possibility to develop generic, domain-

agnostic, data-driven methodologies and algorithms for performing prescriptive 

analytics.  

Proposition 5: AI can assist the development, application and management of water 

analytics methods in the industrial water treatment domain. 
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3.5.4.  Knowledge Sharing with Analytics 

The adoption of knowledge sharing practices may improve the communication between 

data scientists and domain experts during data analysis projects by capturing and 

externalizing communicated or created knowledge. Such knowledge sharing practices 

can support and improve the Problem and Data understanding phases of the data 

analytics process by providing a common ground when describing the domain and related 

problem and data aspects. On the other hand, the data scientists could use the 

knowledge sharing model to define the predictive functions to solve the data analytical 

tasks and to present to the domain experts, how such functions influence the domain 

KPIs. The data-driven methods of the AquaSPICE data analytics platform, as well as first-

principle models supported by the AquaSPICE Process Simulation and Modelling (PSM) 

tool will be linked with the Knowledge Graph already developed and delivered with D4.2 

in order to enable knowledge sharing between water treatment experts. [44] 

Proposition 6: Knowledge sharing may be leveraged by best practices and know-how 

sharing and can support the cross-process adoption of water data analytics methods. 
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4. AquaSPICE Analytics Platform 
In the context of the AquaSPICE project, a comprehensive data analytics platform for both 

real-time water monitoring data and historical data has been designed and developed. 

The target user group of the platform is water management professionals and data 

analysts. The platform performs various data analytics tasks, including descriptive 

statistics and analytics, diagnostic reports, predictive analytics, and anomaly detection; 

the results are then visualized providing the end user with useful insights and graphs. In 

addition, analysts can perform more complex analyses and experiment with machine 

learning models via a graphical user interface that also provides experiment tracking and 

logs throughout the analytics lifecycle. The analysts can select and deploy the models that 

will afterward be used to produce the data analytics insights. 

4.1. Review of Relevant Technologies 
As artificial intelligence and data analysis techniques are increasingly integrated into 

large-scale projects, managing, and maintaining machine learning experiments can 

present some challenges. These experiments involve various assets, such as algorithms, 

datasets used for training, evaluating, and testing the algorithms, hyperparameters, 

parameters, model metrics, artifacts, and logs. Artifacts can include any output during 

the experiment process, such as files, models, and checkpoints, while logs may contain 

details such as date, time, duration, resource metrics, errors, and runtime messages. As 

the number of experiments and project complexity grows, the need to keep track of all 

the experiments and their assets more effectively becomes more evident. This need was 

met by experiment tracking tools, which are important assets that accompany the 

development and maintenance of AI projects. Experiment tracking tools are 

advantageous for the development and maintenance of AI projects as they help to 

manage and organize experiments effectively. Additionally, they promote experiment 

reproducibility, sharing and comparison [45][46]. 

An overview of the experiment tracking tools that were examined in the research context 

are summarized in the following table (Table 8) and includes Kubeflow1, MLflow2, Comet 

ML3, Neptune4 and Guild AI5. 

 
1 https://www.kubeflow.org/ 
2 https://mlflow.org/ 
3 https://www.comet.ml/ 
4 https://neptune.ai/ 
5 https://guild.ai/ 
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Table 8: Experiment Tracking Tools Comparison: Pros and Cons 

Tool Pros Cons 

Kubeflow Open-source 
Comprehensive platform 
WEB UI 
Complex pipelines 

orchestration 
Active community 

Complexity 
Can be used with the 

Kubernetes container 

orchestration system only 
Learning curve 
Resources Intensive 
Extensive code & infrastructure 

changes 

MLflow Open-source 
Comprehensive suite 
WEB UI 
Large community 

Resources Intensive 
Simpler ML pipelines 

Comet ML Collaboration 
Rich visualization 
WEB UI 

Learning curve 
Pricing 

Neptune Collaborative platform 
WEB UI 

Pricing 

Guild AI Open-source 
No code changes 
Local resources 
Command line and WEB UI 

Smaller community 
Smaller teams 

  

The monitoring needs differ per user role and project. Considering the required resources 

cost, the tool’s complexity and the project’s needs, it was deemed appropriate to develop 

a custom solution. This solution adopted a custom comprehensive approach that 

combines Guild AI and a user-friendly graphical interface that additionally allows for data 

selection, experiment conduction and monitoring as well as model optimization, 

deployment, and management, all wrapped in a microservice that offers additional 

features for the data scientists and professionals; these features are presented in more 

detail in the next chapter. Guild AI was selected due to its simplicity and reliability. It 

requires minor code changes and configuration, making the platform more independent. 

The lack of user interfaces was considered advantageous, promoting the development of 

custom graphical user interfaces that include actions that are relevant but not too 

complex for the users. 

4.2. Architecture 
The AquaSPICE data analytics platform has been designed based on the principles of 

microservices architecture. Microservices architecture is a software architectural style 

that, as opposed to monolithic architecture, divides an application into smaller, 

independently deployable services, each focused on a specific scope [47]. These services 

communicate with each other usually through APIs or messaging systems; their collection 

structures the comprehensive large-scale software application. Microservices are 

designed to promote modularity, scalability, rapid development, resilience, and fault 
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tolerance. This approach is particularly suitable for complex enterprise applications, like 

data analytics, where different components may have varying scalability and lifecycle 

requirements [47][48]. However, it is crucial to carefully design the architecture as well 

as to effectively manage the added complexity.  

Two microservices have been created for the platform: the Data Analytics service and the 

Data Analytics Workbench service. Each microservice is framed by a well-defined scope 

that identifies its expertise. Data Analytics service is responsible for computing, 

presenting, and visualizing the data analytics results to the Water CPS and digital twin 

systems. Data Analytics Workbench service’s aims to provide a place where analysts can 

create and execute machine learning experiments, compare models, and select to deploy 

the model to then be retrieved by the Data Analytics service for predictions and anomaly 

detection.  

Separate databases are kept by the microservices. In the Data Analytics service, analytics 

metadata are stored in the database, the metadata include pilots, processes, assets, and 

machine learning models identifiers. Experiment logs and metadata produced during 

data analytics workbench actions are stored in the service’s database and might include 

model hyperparameters, results, dataset variables and selected model per data analytics 

process. Whenever a new model is deployed from the workbench, the model is kept in 

cloud storage and the other service is triggered to retrieve the new model and update 

the related data analytics results. Communications from the external Water CPS and 

Digital Twins systems are achieved via API calls; the requests are routed to the suitable 

microservice which in turn responds with the appropriate result. Each microservice 

receives real-time data streams from an external broker. A diagram that demonstrates 

the architecture and the high-level communications between the services and the 

external Water CPS and digital twin systems is presented in Figure 2.
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Figure 2: Architecture and High-level Data Flow Diagram 
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4.3. Development 
Reliable state-of-the-art tools were selected for the development and deployment of the 

platform to create a robust and scalable ecosystem.  Each microservice has a specific 

purpose and utilizes distinct technologies, although there are also shared ones. The 

technology stack is divided into the following categories: 

1. Front-End 

2. Back-End 

3. Web Infrastructure 

4. Cloud Infrastructure 

5. Orchestration 

6. Development tools 

Front-end is the client-side of an application responsible for the information presentation 

and user interactions; it includes the graphical user interface. For the data analytics 

service, Streamlit6 along with CSS7 and JavaScript programming language were utilized. 

Streamlit is an open-source Python library designed for the presentation of data science 

projects. The workbench is developed with Vue.js framework, and it follows Material 

Design principles. Material Design is an adaptable system of guidelines and components 

that supports the best practices of user interface design. Additionally, HTML5, CSS and 

JavaScript were used to adapt the component styles. 

 
6 https://streamlit.io/ 
7 https://www.w3.org/TR/css-2022/ 
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Back-end is the server-side of an application; it is responsible for the business logic, the 

data processing, database operations and data delivery to the front-end. Both services 

are developed with Python programming language and FastAPI8 web framework. 

PostgreSQL9 database is selected as the relational database management system while 

InfluxDB10 is utilized for the time-series data operations. InfluxDB is a NoSQL database 

designed for efficiently storing, querying, and visualizing large volumes of time-series 

data, well suited in IoT and industrial automation scenarios. In order for the data analytics 

workbench to retrieve real time data streams from the WaterCPS broker, MQTT11 

(Message Queuing Telemetry Transport) protocol is used to create an MQTT client and 

establish this connection and subscribe to the relevant topic. In both microservices the 

fundamental back-end libraries, leveraged for the machine learning processes, are 

Tensorflow12 and Keras13 deep learning frameworks, Scikit-learn14 as a machine learning 

framework and Plotly15 for the data visualizations. Tensorflow and Keras are used for 

deep learning model development, training and ingestion while Scikit-learn provides 

machine learning algorithms for regression, classification, clustering, and other common 

ML tasks. Additionally, PyOD16 is employed for anomaly and outlier detection algorithms. 

Specifically for the experiment tracking and model optimization in the data analytics 

workbench, GuildAI is applied. 

Uvicorn17 and Nginx18 were combined to build a scalable web infrastructure. Uvicorn is 

an Asynchronous Server Gateway Interface (ASGI) responsible for serving the FastAPI-

developed application, while Nginx serves as a reverse proxy managing security and load 

balancing.  

 
8 https://fastapi.tiangolo.com/ 
9 https://www.postgresql.org/ 
10 https://www.influxdata.com/home/ 
11 https://mqtt.org/ 
12 https://www.tensorflow.org/ 
13 https://www.tensorflow.org/guide/keras 
14 https://scikit-learn.org/ 
15 https://plotly.com/ 
16 https://pyod.readthedocs.io/en/latest/ 
17 https://www.uvicorn.org/ 
18 https://www.nginx.com/ 
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Figure 3: The Technology Stack of the Developed Platform 

Concerning the recent state of the cloud infrastructure of the platform, Cloudflare19 is 

used as the Content Delivery Network (CDN) and Domain Name System (DNS), Digital 

Ocean as the cloud provider, and Amazon S3 as cloud storage for objects like ML models. 

This implies that the platform is hosted on Digital Ocean20 servers, Cloudflare caches and 

distributes the static content of the platform, and Cloudflare handles the DNS queries 

made by a user’s device resolving the DNS. 

For containerization and packaging of the platform and its dependencies, docker is 

leveraged. Docker21 is widely used in microservices architecture promoting the 

maintainability and scalability of the independently deployable services. 

During the development phase, the more significant tools that supported and promoted 

the results are Figma for the designs, PyCharm IDE22 for Python as well as DataGrip IDE23 

for databases, Postman24 for the API testing, GitHub25 for version control, and 

DockerHub26 as the container image registry. 

 
19 https://www.cloudflare.com/ 
20 https://www.digitalocean.com/ 
21 https://www.docker.com/ 
22 https://www.jetbrains.com/pycharm/ 
23 https://www.jetbrains.com/datagrip/ 
24 https://www.postman.com/ 
25 https://github.com/ 
26 https://hub.docker.com/ 
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The complete ecosystem of the technologies that are utilized across the platform is 

summarized in Figure 3. 

4.4. Implementation 
The main scope of the data analytics workbench is to empower analysts and data 

professionals to conduct and track experiments using machine and deep learning 

methods in a simplified yet inclusive and user-friendly environment. Additional 

functionalities provide insights and information. 

 

Figure 4: Data Analytics Workbench - Home Page 

On the home page core guidelines inform the user of the basic functionalities of the 

workbench. (Figure 4) From the side menu, the user can select the process and a specific 

asset to continue to other tasks such as data selection, experiments, and models. The 

main menu items are always accessible from the side menu. Each menu item corresponds 

to a specific page; the menu items consist of the following options: 

1. Home 

2. Data 

3. Experiments 

4. Models 

5. Algorithms 

6. Monitoring 

On the “Data” page (Figure 5), users can select, and preview existing datasets. Those 

datasets consist of historical data that are derived from the selected asset for the selected 

date range and can be used in the experiments. Alternatively, the user can download the 

data. 
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Figure 5: Data Analytics Workbench - Data Page 

The experiments page provides a list of past experiments (Figure 6) and allows users to 

conduct and track new experiments (Figure 7) using the selected data, algorithms, and 

parameters. Popular machine learning frameworks and libraries like TensorFlow, Scikit-

learn, and PyOD are supported. Experiment parameters, model parameters and 

hyperparameters might differ per algorithm and analysis. Experiment parameters include 

the data analysis type (e.g., anomaly detection, forecasting, prediction), the target 

variable, and whether the analysis is multivariate or univariate. Additionally, there are 

two types of parameters in machine learning models: model parameters and 

hyperparameters. Model parameters are computed during the learning process and 

might include weights and biases. On the other hand, model hyperparameters are 

external to the model and need to be set before the training process, since they configure 

the model's architecture and behavior. The model’s performance is significantly 

determined by the hyperparameters, making their optimization a crucial task in ML 

experiments. [49] Common hyperparameters include learning rate, regularizations, 

number of layers and neurons in an artificial neural network, and contamination in 

anomaly detection algorithms. During the experiment conduction, metadata is stored 

including models, hyperparameters, metrics and dataset details. The user can compare 

and re-run past experiments as well as get informed about the experiment's status, logs, 

and results. Once an experiment is completed successfully, the produced model becomes 

available on the model page discussed below. 



 

33 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

 

Figure 6: Data Analytics Workbench - Experiments Page: Logs 

 

Figure 7: Data Analytics Workbench - Experiments Page: New Experiment 

On the model page (Figure 8), insights of the models produced by the ML experiments 

are presented. The user can select a model from the list to view more details, optimize 

the model’s hyperparameters, compare the model to others, delete a model and select 

the one to be deployed and afterwards consumed by the Data Analytics Service.  



 

34 

 
AquaSPICE  D4.8 – a. AI Inference tool for water efficiency problem detection 

and remedial action (intermediate) 

 

Figure 8: Data Analytics Workbench - Model Page: Model Listing 

Users can be informed about the algorithms that are available on the platform, their 

parameters and hyperparameters on the algorithms page under the relevant data 

analytics type tab (Figure 9). 

 

Figure 9: Data Analytics Workbench - Algorithms Page 

The monitoring page (Figure 10) provides an interface where users can manage alerts 

and/or actions to be fired when anomalies or outliers are detected in the data. 
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Figure 10: Data Analytics Workbench - Monitoring Page 
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5. AI and Analytics Methods, Algorithms & 

Models 
This section describes the AI and Analytics methods, algorithms and models utilized and 

developed as part of the data analyses.  

5.1. Descriptive Analytics 
Descriptive statistics are usually the first step in a data analytics process. At first, a 

summary of descriptive statistics is computed and presented in a table form (Figure 11) 

to provide an overview of the selected data. The table includes the following metrics:  

1. count: The number of non-empty values. 

2. mean: The average value. 

3. std: The standard deviation (std) measures the amount of variation or dispersion 

in the dataset. 

4. min: The minimum value. 

5. 25%: The 25% percentile. 

6. 50%: The 50% percentile. 

7. 75%: The 75% percentile. 

8. max: The maximum value. 

Percentile in 5,6 and 7 means how many of the values are less than the given percentile. 

Regarding std, a low value indicates that the data are close to the mean and a higher 

value suggests the data are spread out over a larger range of values. 

 

 

Figure 11: Descriptive Statistics Table Sample 

Subsequently, interactive descriptive plots allow end users to explore the data and gain 

insights. User interactions include zoom in/out on specific data points and hovering over 

plot areas to see more details. Line plots are useful for visualizing data that change over 

time. In a line plot, the information is displayed as a series of data points connected by 
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line segments. Two-line plots are featured, one that includes all the variables of the 

selected asset (Figure 12) and another that presents only the selected variable (Figure 

13). For the multivariate line plot’s needs the data points are scaled to fit in and the user 

can select which variables to draw inside the plot, allowing for visual comparison. The line 

plot that contains only one variable, presents the real data values and provides a precise 

view of the data points over time.  

 

 

Figure 12: Multivariate Line Plot Sample 

 

 

Figure 13: Sample Univariate Line Plot for Humidity 

For the selected variable and date range, violin plots are produced (Figure 14). The violin 

plot introduced by Hintze and Nelson in 1998 features a boxplot together with a plot of 

the density trace. As in the usual boxplot, the whiskers are extended to the farthest points 

within 1.5 inter-quartile ranges from the 25th and 75th percentiles [50]. A violin plot is a 

method of plotting numeric data, similar to box plots, except that they also show the 

probability density of the data at different values, usually smoothed by a kernel density 

estimator. 
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Figure 14: Sample Violin Plot of Humidity 

Additionally, for a specific variable and time range, time series decomposition was 

performed (Figure 15). Time series decomposition involves thinking of a series as a 

combination of level, trend, seasonality, and noise components described as follows: 

1. Observed values (level): real data points  

2. Trend: long-term tendency of data  

3. Seasonality: regular predictable fluctuations in data  

4. Residuals (noise): what remains after removing trend and seasonality from the 

data [51] 

Decomposition serves as a useful abstract model for conceptualizing time series. It aids 

better understanding of patterns and latent behaviors and can lead to more 

comprehensive problem-solving and decision-making. 
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Figure 15: Time Series Decomposition of Humidity Samples 

 

5.2. Predictive Analytics 
Predictive analytics encloses techniques for forecasting future values from historical data. 

In deep learning, neural network models and particularly Long Short-Term Memory 

(LSTM) networks, are widely utilized to analyze sequential and time series data. LSTM 

units [52] are a special kind of gated Recurrent Neural Network that, unlike traditional 

RNNs, overcomes the vanishing and exploding gradients problem. This problem states 

that gradients during training may vanish or explode exponentially over many time steps. 

LSTMs excel in learning long-term dependencies which makes them suitable for time 

series data; this is achieved through a sophisticated system of gates between LSTM cells 

that allow the model to selectively remember or forget information [53]. LSTM modules 

consist of a memory cell and four gates: input, input modulation, forget, and output 

(Figure 16). The memory cell allows for learning long-term dependencies. Concerning the 

gates, the input gate decides which new data is important to be added to the cell state 

and typically involves a sigmoid function. As a part of the input gate, an input modulation 

gate processes the input data. This process involves a normalization of the data values 

within a specific range to enhance their interpretability by the LSTM cell. To achieve this 

transformation, a non-linear function, such as the tanh (hyperbolic tangent) function, is 
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applied to the input data.  The forget gate is responsible for deciding what data need to 

be discarded from the cell state and also involves a sigmoid function. Finally, the output 

gate computes the next hidden state from the cell state [53][54]. 

 

Figure 16: LSTM Cell (adapted from [54]) 

Deep learning models using LSTM networks were developed to forecast future values of 

a target variable considering the past values of the whole sequence. Prior to starting the 

model training, several preparatory steps are essential. These steps include handling 

missing values in the dataset and scaling the values to be interpretable by the neural 

network.  

The predictive problem considers {y} previous values of all the relevant variables and 

predicts the next {x} values of a selected target variable. To create a dataset from which 

the model can learn and solve the forementioned problem, the dataset needs to be 

converted into a supervised learning format. This conversion in the context of time series 

forecasting, entails that the dataset is restructured so that each row contains both the {y} 

previous inputs and the {x} outputs to be forecasted. This is achieved by shifting the 

observations to align the current time (t) and future times (t+1, t+n) as forecast targets, 

with past observations (t-1, t-n) serving as input features. {y} and {x} are considered as 

dynamic variables. 

 

Figure 17: Model Training RMSE and MAE 
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After the appropriate data preprocessing and transformations are applied, the model is 

trained and evaluated so that a basis of hyperparameters is identified (Figure 17). Since 

the base model is determined, hyperparameter optimization process starts to find the 

optimal number of epochs, neurons per layer, dropout values and regularizers. With the 

success of the hyperparameter optimisation, the best and more suitable model is 

selected, evaluated and finalized (trained again) using the whole dataset. Finally, the 

model is utilized for predictions and its results are visualized in a line plot that contains 

the real data points, the previously predicted and the forecasted future values (Figure 

18). 

 

Figure 18: Line Plot of Sample Predicted vs Actual Values 

Regarding the detection of anomalies in data sequences, multivariate anomaly detection 

is performed using unsupervised algorithms such as isolation forest and local outlier 

factor. Considering the unsupervised approach and the lack of labeled data for 

evaluation, Isolation Forest was selected due to its faster execution and effectiveness in 

detecting anomalies in high-dimensional datasets [55][56][57]. Furthermore, the 

algorithm points out anomalies directly instead of profiling the normal patterns, making 

it valuable in environments where “normal” is challenging to pinpoint or changes over 

time. Isolation forest was thought to be a robust choice for such a real-world application 

that needs to detect anomalies in a timely and efficient way [56][57][58]. 

Isolation Forest, initially proposed in 2008, builds a structure of decision trees (iTrees) for 

the dataset to isolate every data value and identifies anomalies as those values that have 

short average path lengths on the iTrees [58]. The algorithm is based on the premise that 

the anomalies are easier to isolate and therefore require shorter paths [55][58]. A 

representation of an Isolation Forest and its iTrees is depicted in Figure 19, where light 

blue nodes represent the normal observations, blue nodes represent rare normal values 

and red nodes present detected anomalous observation.  
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Figure 19: Isolation Forest: Trees and Scores [56][55] 

The results of the Isolation Forest for the multivariate analysis are visualized using a bar 

plot that highlights the five most contributing features (Figure 20). On the other hand, for 

the univariate outlier detection the results are represented through a line plot that 

includes the actual data points of the examined variable with the detected outliers 

marked in red (Figure 21). In both cases the related observations are displayed in a table 

format. 

  

 

Figure 20: Multivariate Anomaly Detection using Isolation Forest in Cooling Tower Data: Top 5 Contributing Features 
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Figure 21: Univariate Anomaly Detection: Line Plot of Humidity and Detected Outliers 
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6. Conclusions and Next Steps 
 

Based on the broad requirements elicited by use case partners, Task 4.5 designed and 

developed a data analytics platform for both real-time water monitoring data and 

historical data. The target user group of the platform is water management professionals 

(engineers) and data analysts. This platform provides a suite of data analytics 

functionalities. It includes basic tasks like descriptive statistics and diagnostics, as well as 

more advanced features like predictive analytics and anomaly detection. The results are 

visualized to offer clear insights and graphs. Furthermore, it allows analysts to conduct 

complex analyses and experiment with machine learning models through a user-friendly 

graphical interface, which includes features for tracking experiments and logging. 

Analysts can also choose and deploy models that are later used to generate data analytics 

insights. 

In this deliverable, in addition to the platform, a generic, initial set of analytics methods 

and models are reported, corresponding to the generic requirements elicited from use 

case partners. These methods will be specialized, adapted and further extended to cover 

specialised requirements. Further specialization to represent the use cases applications 

fully and accurately is currently undertaken and will be delivered and reported in the final 

version of D4.8. 

Limitations and risks that may hamper the uptake of the platform by use case partners 

include the limited availability of labelled data sets that can be used for training of 

supervised machine learning methods. For example, although all use case partners have 

requested the provision of anomaly detection methods, no training data sets with 

labelled anomalies exist. To this end, unsupervised methods for anomaly detection have 

been used that do not require labelled datasets; however, their accuracy requires further 

investigation and analysis before use cases can utilise them operationally.  

Benefits of our platform include the microservice-based architecture, capability to cope 

with both historical and real-time data coming from the RTM platform of AquaSPICE, tight 

integration with the WaterCPS (including look & feel), the provision of generic methods 

and models as default offering to users but also the capability to support bespoke/custom 

models.  

In addition to the development of bespoke and specific models and methods for the 

AquaSPICE use cases, our future work will include the development of a soft-sensor 

method as well as a method for synergistically coupling data-driven and first-principle 

models that will enable calibration and support improved accuracy and performance.  
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